Limit shape of optimal convex lattice polygons in the sense of different metrics
نویسنده
چکیده
Classes of convex lattice polygons which have minimal lp–perimeter with respect to the number of their vertices are said to be optimal in the sense of lp metric. The purpose of this paper is to prove the existence and explicitly find the limit shape of the sequence of these optimal convex lattice polygons as the number of their vertices tends to infinity. It is proved that if p is arbitrary integer or ∞, the limit shape of the south–east arc of optimal convex lattice polygons in sense of lp metric is a curve given parametrically by (Cp x(α) Ip , C y (α) Ip ) , 0 < α < ∞, where C x(α) = α 2 ( − 3 (α + 1)−3/p + ∞ ∑ k=0 ( − 3 p − 1 k ) α pk + 1 ) , C y (α) = α 2 ( − 3 (α + 1)−3/p + ∞ ∑ k=0 ( − 3 p − 1 k ) α pk + 2 ) ,
منابع مشابه
Large Deviations in the Geometry of Convex Lattice Polygons
We provide a full large deviation principle (LDP) for the uniform measure on certain ensembles of convex lattice polygons. This LDP provides for the analysis of concentration of the measure on convex closed curves. In particular, convergence to a limiting shape results in some particular cases, including convergence to a circle when the ensemble is deened as those centered convex polygons, with...
متن کاملLimit Theorems for Random Convex Polygons
Consider the set Ln of convex polygons Γ with vertices on the integer lattice Z, non-negative inclination of the edges and fixed endpoints 0 = (0, 0) and n = (n1, n2). We study the asymptotic properties of the ensemble Ln, as n1, n2 →∞, with respect to a certain parametric class of probability distributions Pn = P (r) n (0 < r <∞) on the space Ln (in particular, including the uniform distributi...
متن کاملAlgorithm for finding the largest inscribed rectangle in polygon
In many industrial and non-industrial applications, it is necessary to identify the largest inscribed rectangle in a certain shape. The problem is studied for convex and non-convex polygons. Another criterion is the direction of the rectangle: axis aligned or general. In this paper a heuristic algorithm is presented for finding the largest axis aligned inscribed rectangle in a general polygon. ...
متن کاملAsymptotic behaviour of convex and column-convex lattice polygons with fixed area and varying perimeter
We study the inflated phase of two dimensional lattice polygons, both convex and column-convex, with fixed area A and variable perimeter, when a weight μ exp[−Jb] is associated to a polygon with perimeter t and b bends. The mean perimeter is calculated as a function of the fugacity μ and the bending rigidity J . In the limit μ → 0, the mean perimeter has the asymptotic behaviour 〈t〉/4 √ A ≃ 1−K...
متن کاملConvex $L$-lattice subgroups in $L$-ordered groups
In this paper, we have focused to study convex $L$-subgroups of an $L$-ordered group. First, we introduce the concept of a convex $L$-subgroup and a convex $L$-lattice subgroup of an $L$-ordered group and give some examples. Then we find some properties and use them to construct convex $L$-subgroup generated by a subset $S$ of an $L$-ordered group $G$ . Also, we generalize a well known result a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 271 شماره
صفحات -
تاریخ انتشار 2003